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bstract

The three-dimensional analog of the Giesekus–Tanner (G–T) theorem [B. Caswell, Non-Newtonian flow at lowest order: the role of the Reiner-
ivlin stress, J. Non-Newtonian Fluid Mech. 133 (1) (2006) 1–13] allows the flow in the vicinity of a pressure tap to be analyzed with the solution of

he inertialess flow of a Reiner-Rivlin fluid just as G–T was used [R.I. Tanner, A. Pipkin, Intrinsic errors in pressure-hole measurements, Trans. Soc.
heol. 14 (1969) 471] to analyze the corresponding two-dimensional flow with the Stokes solution. Later Kearsley [E.A. Kearsley, Intrinsic errors

or pressure measurements in a slot along a flow, Trans. Soc. Rheol. 14 (3) (1970) 419–424] extended the Tanner–Pipkin analysis to the rectilinear
ow in a channel with a parallel slot. In the two-dimensional case the Tanner–Pipkin term is the hole pressure relative to the Stokes value (usually
eglected), and is determined solely by the first normal stress function evaluated at the wall shear rate of the undisturbed flow. It is thus “intrinsic”
ince dimensional analysis suggests the hole pressure should also depend on the hole geometry. Kearsley’s result is independent of slot geometry
nly in the limit that the slot is deep and very narrow relative to the size of the main channel. In three-dimensions the Tanner–Pipkin term again
ontributes an intrinsic pressure independent of hole geometry, but now it is now relative to the Reiner–Rivlin value which itself depends on the hole
eometry and is not negligible. Hence the complete hole pressure in three-dimensions requires the solution of the Reiner–Rivlin problem which in
eneral will be obtained numerically. The latter is formulated for numerical simulation so that the hole pressure can be read off from values of the
ressure field without any post-processing calculation of velocity gradients. The numerical simulations were performed with a three-dimensional
pectral element code [G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford University Press, 1999] well suited to the
fficient solution of flow problems in complex geometries. The limiting values of the Reiner–Rivlin hole pressure have been obtained for several

ole/channel ratios. Numerical results for the larger holes are not in agreement with the H–P theory [K. Higashitani, W.G. Pritchard, A kinematic
alculation of intrinsic errors in pressure measurements made with holes, Trans. Soc. Rheol. 16 (4) (1972) 687–696], and for such holes the Stokes
ole pressure was found to be in the measurable range.

2007 Elsevier B.V. All rights reserved.
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. Stress in materially steady flows

In a previous article Caswell [1] defined the materially steady
tress system in terms of the Reiner–Rivlin stress system which
n isochoric flow is an isotropic function of A, twice the strain
ate tensor, and is given by
= −1P(II, III) + η(II, III)A + α(II, III)A2 (1)

� Paper was originally presented at the International Workshop on Numberical
ethods for Viscoelastic Flows, Sant Fe, NM, June 2005.
∗ Corresponding author. Tel.: +1 401 863 1448; fax: +1 401 863 9026.
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ere the scalar coefficients η and α are functions of II and III,
he second and third invariants of A defined by

I = 1
2 tr A2, III = 1

3 tr A3 (2)

he isotropic scalar pressure P is an arbitrary function of which
part may be expressed in terms of II and III and another part is

o be determined by the solution of the equation of motion and
he boundary conditions which define the flow problem.

Caswell [1] defines the materially steady stress S in terms
f the Reiner–Rivlin stress R of Eq. (1), including the scalar

ressure P, as

= R − D(λ(II, III)R)

Dt + 1�
(3)

mailto:caswell@dam.brown.edu
dx.doi.org/10.1016/j.jnnfm.2006.11.007
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PH = σw − σh (10)

The depth is large enough to guarantee hydrostatic conditions so
that by Eqs. (1) and (9) it follows respectively that both the R-
8 V. Symeonidis, B. Caswell / J. Non-N

here λ is a scalar function of the indicated arguments, and
is an additional isotropic stress which may be required to

atisfy the equation of motion. The co-rotational time rate is
enoted by D(∗)/Dt, and is clearly distinguishable from the
aterial derivative denoted by an over dot. In steady viscometric
ows III = 0, and the coefficients η, α and the factor λ are then
unctions of II alone. It is easily shown that Eq. (3) becomes
he familiar CEF equation [2] with viscosity function η(II), first
ormal stress coefficient 2λ(II)η(II) and second normal stress
oefficient α(II) − λ(II)η(II).

Caswell [1] gave dynamical arguments for requiring two of
he coefficients in Eq. (3) to be derivable from a strain-rate poten-
ial Φ(II, III) with the time-function λ(II, III) as an integrating
actor. Theorem 1.1 below, restricts λ to be constant and replaces

with λφ(II, III). The significance of the potential φ(II, III) is
hat its volume integral is the functional to be rendered stationary
n the variational formulation [3] of the inertialess Reiner–Rivlin
roblem,

· V = 0, ∇ · R = 0, ∇ × (∇ · R′) = 0, (4)

here R′ is the non-isotropic part of the Reiner–Rivlin stress
quation (1) whose coefficients are given by

= ∂φ

∂II
, α = ∂φ

∂III
. (5)

aswell [1] summarizes the role of the Reiner–Rivlin stress in
ows governed by the materially constant stress of Eq. (3) with
onstant λ as follows:

heorem 1.1. Let V, P be velocity, pressure fields, and let S
e the materially constant stress of Eq. (3) with constant λ and
ith � = λφ(II, III)/2,

= R − λ

[DR
Dt

− 1
2
φ(II, III)

]
(6)

here R is constructed from V, P with Eq. (1). Then this stress
ystem satisfies the inertialess flow or equilibrium equation and
ts compatibility condition on the non-isotropic partS′ of S,

· S = 0, ∇ × (∇ · S′) = 0, (7)

rovided the velocity–pressure fields V, P satisfy the Reiner–
ivlin problem of Eq. (4) with coefficients η(II, III), α(II, III)
erivable from the strain-rate potential φ(II, III) according to
q. (5).

Tanner [4] proved a similar theorem for flows governed by
he equilibrium of the CEF stress in the two-dimensional plane
here III = 0, α plays no role and η is a function of II alone. In

he limit of small strain rates, II, III → 0 the coefficients η, α

f Eq. (1) are constants, λ is the mean relaxation time of linear
iscoelasticity, and the strain-rate potential becomes

= ηII + αIII (8)
heorem 1.1 reduces to Theorem 1a of Caswell [1], the
hree-dimensional generalization of the Giesekus–Tanner (G–T)
heorem [5,6]. The materially steady stress system (6) then

F
t
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ecomes the augmented second order fluid,

= −1
[
P − λṖ − λη

II

2
− λα

III

2

]
+ ηA

+ αA2 − λη
DA
Dt

− λα
DA2

Dt
. (9)

his stress system is the complete second order fluid (SOF) sys-
em with three coefficients augmented by the last term of third
rder whose coefficient is a product of two coefficients of the
OF. The G–T theorem is recovered either by setting α = 0 in
qs. (8) and (9), or by restriction of the motion to plane flow
here A is isotropic and the terms in α can be absorbed into the

sotropic pressure. With α = 0 and constant η the Reiner–Rivlin
tress R of Eq. (1) reduces to the Newtonian stress, and the
einer–Rivlin problem of Eq. (4) becomes the Stokes problem.
he power of G–T theorem is the prospect of obtaining the solu-

ion of a nonlinear problem from that of the corresponding linear
ne. Theorem 1a of [1] shows that in three-dimensions all that
an be expected is a reduction of the order of spatial differen-
iation, which can have important advantages when numerical
olutions are sought. It is clearly preferable to apply numerical
ethods to a problem defined by Eq. (4) instead of Eq. (7). This

s the basis for the calculation of the limiting value of the three-
imensional hole pressure, which is the main objective of this
aper.

. The hole pressure

A tap in the wall of a channel, Fig. 1, gives rise to a small
ow disturbance which in turn alters the pressure relative to its
ndisturbed value in the neighborhood of the tap. Deep within
he hole this disturbance is known as the hole pressure, and is
efined by Lodge and Vargas [7] as the difference of the normal
ractions σw = −P1 at the wall in undisturbed channel flow, and
h = −P2 at the bottom of the hole respectively.
ig. 1. Channel with pressure tap. T1 and T2 indicate locations of pressure
ransducers in the stressmeter of Lodge and Vargas [7].
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tress and the S-stress become isotropic. The formal calculation
f PH is carried out in two steps:

. S − R, the stress relative to the Reiner–Rivlin stress, is
obtained from Eq. (3), and will be shown to be independent
of hole size.

. The part which can be found only by solution of the
Reiner–Rivlin problem and depends on the hole size.

The first step requires only that S − R be considered. Far
pstream in the channel the flow is exactly viscometric, and the
tress is then given exactly by the materially constant stress of
q. (3) which reduces to the CEF [2] equation in such flows. Let

he velocity be V = u(y)i relative to Cartesian coordinates x, y

long and transverse to the streamlines respectively, and with z
ormal to the xy plane. The kinematical tensors of the materially
onstant stress system are evaluated in terms of the strain rate

˙ = du/dy as follows:

= (ji + ij)γ̇, A2 = (ii + jj)γ̇2,

DA
Dt

= (jj − ii)γ̇2,
DA2

Dt
= 0, (11)

nd the invariants II, III are then γ̇2, 0 respectively. The stress
ystem of Eq. (1) is then

= −1p + (ji + ij)τ + (ii + jj)σ, (12)

nd from Eq. (3), S − R becomes

− R = 1(λupx + �) − 1
2N1(γ̇2)(jj − ii),

� = 1
2N1(γ̇2) − λupx (13)

here px = ∂p
∂x

, τ = ηγ̇ , σ = αγ̇2, N1 = 2ληγ̇2 is the first nor-
al stress difference, and the coefficients η, α, and λ are now

unctions of II alone. The scalar� is not known for general flows;
owever, in Appendix A of Caswell [1] it was shown that the
orm given in Eq. (13) holds in viscometric flow. The disturbance
ow due to the hole is not easily calculated by direct solution
f the equilibrium equation for typical constitutive equations.
he materially constant stress (3) gives an approximate descrip-

ion of the stress in this nearly viscometric flow. However, the
igher order spatial derivatives in Eq. (3) are well-known to
e troublesome in numerical simulation. Hence a further sim-
lification is required to yield a tractable numerical problem.
he approximation of the time function λ(II, III) by a con-
tant λc reduces the flow problem by means of Theorem 1.1 to
he solution of the lower-order Reiner–Rivlin problem (4). It is
ell-known that with the same viscosity function the CEF prob-

em and the Reiner–Rivlin problem are satisfied by the same
iscometric velocity field. This suggests the constant λc can be

xed in the far-upstream, viscometric region of the channel by
quating, at the channel-wall, the exact difference-stresses of
q. (13) to the values given by the constant- λ approximation of
q. (6). By use of Eqs. (11) and (12) the Reiner–Rivlin stress is

P

w
s
c
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onstructed, and is substituted into Eq. (6) to yield

− R = 1λc

(
upx + φ

2
+ φc

2

)
− λcηγ̇2(jj − ii), (14)

here φc is a constant which has no effect on the equilibrium
quation (7), and the potential φ(γ̇2, 0) vanishes as γ̇2 → 0. In
iscometric flow Caswell [1](see Appendix A therein) showed
hat φ can be expressed in terms of the shear stress τ as

φ(τ)

2
= WR(τ) −

∫ τ

0

WR(τ′)
τ′ dτ′, WR = τγ̇ (15)

qs. (13) and (14) have no off-diagonal components, and equal-
ty of their corresponding diagonal-components is satisfied by

φc

2
=

∫ τw

0

WR(τ)

τ
dτ, λc = N1(τw)

2τwγ̇w
, (16)

here the subscript w denotes wall values in the viscometric
omain far from the hole. Hydrostatic conditions at the bottom
f a deep hole means the only non-zero term in Eq. (6) is the
onstant isotropic tension, hence

− R = 1
λcφc

2
= 1

∫ τw

0
λc

WR(τ)

τ
dτ. (17)

odge and Vargas [7] define the hole pressure as the wall value
f the normal wall-stress in undisturbed plane Poiseuille flow
inus the total stress deep inside the hole. From Eqs. (14) and

16) the jj-component of the difference stress is zero on the wall,
nd hence the hole pressure in excess of the Reiner–Rivlin value
s, in fact, the isotropic stress in Eq. (17). Tanner [4] obtained this
ntegral in plane flow with the assumption that the first normal
tress coefficient is proportional to the viscosity function. As
uggested above, this term is intrinsic, i.e. independent of the
ole geometry. In the limit of small strain rates Theorem 1.1
educes to Theorem 1a of [1], λc becomes the mean relaxation
ime of linear viscoelasticity and the integral (17) goes to the
ipkin-Tanner [8] limit of N1/4.

The complete hole pressure is obtained in step 2 by solution
f the Reiner–Rivlin problem in the channel-with-hole geometry
Fig. 1). In the formulation of the Reiner–Rivlin problem given
elow the pressure is modified so that Eq. (1) is replaced by

= −1P + ηA + α(A2 − 1II) (18)

he effect of this pressure definition is that in plane flow the α

erm vanishes. In viscometric flow the stress component normal
o the shear planes is −P , and since the pressure is a primi-
ive variable in the numerical scheme the hole pressure given
y Eq. (10) can be read off from the solution without spatial
ifferentiation of the velocity field. In this work solutions have
een obtained only for the small strain-rate limit where η and
are constant, and where dimensional analysis suggests the

einer–Rivlin hole pressure PRR should have the form

2

RR = −PHS − rαγ̇w, (19)

here the Stokes (α = 0) hole pressure PHS and r are con-
tant for every hole size. As defined, r is positive for all known
ases. These are: r = 0, 1/2, 1/6 respectively for the transverse
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the magnitude of ∇ · V. From Eq. (26) the divergence of ∇ · C
is

∇ · (∇ · C) = −∇ω : ∇ω. (27)
0 V. Symeonidis, B. Caswell / J. Non-N

lot [8], the parallel slot [9], and the circle (Higashitani and
ritchard [10]). The flow across the transverse slot is planar, and
ence r is zero since the α-term vanishes from Eq. (18). Kears-
ey [9] showed that with a modified pressure field the velocity
eld for the rectilinear flow of a Newtonian fluid also satisfies

he Reiner–Rivlin problem. The flow in the parallel slot is an
xample of a rectilinear motion, and it is used in this work as a
enchmark for the numerical method. From Eqs. (10), (17) and
19), the total hole pressure in the limit of small strain rates can
e written as

H = N1

4
+ PRR = N1

4
− r

[
N1

2
+ N2

]
− PHS, (20)

here N1 and N2 are the first and second normal stress differ-
nces respectively.

The use of the augmented SOF, Eq. (9), for the flow near the
ole can be questioned on the grounds that while velocity gradi-
nts over most of the domain can be small those in the vicinity
f sharp corners can become very large. This applies equally to
he plane flow result of Tanner and Pipkin [8] for the hole pres-
ure due to a transverse slot, the first term of Eq. (20). Along the
enter plane, z = 0, of Fig. 1. the flow near the rim of the hole
hould resemble the plane flow in the vicinity of re-entrant cor-
ers which is known to give rise to singular, but integrable stress
elds for the Newtonian case. Since the nonlinear term in Eq.
18) vanishes in plane flow its effects should be minimal near
uch points of symmetry. In the center plane x = 0 of Fig. 1, the
ow at the rim points connecting the cross-flow hole diameter
hould locally resemble Kearsley’s rectilinear channel flow. In
he numerical investigations of this work both sharp and rounded
orners were tried, and the calculated r values were found not
o be greatly affected.

. The Reiner–Rivlin stress in nearly incompressible
ows

In plane flows the Cayley–Hamilton theorem takes the form

2 − [tr A]A + [ 1
2 (tr A)2 − II]1 = 0, (21)

here tr A = 2∇ · V. It follows from Eq. (21) that for plane iso-
horic motions the flows of the Reiner–Rivlin fluid (Eq. (18)) are
ndistinguishable from the corresponding flows of a Newtonian
uid with viscosity η. In numerical simulation incompressibil-

ty is nearly always imposed as a constraint, and consequently
he calculated flow fields are nearly, but not exactly, isochoric.
t is of interest to formulate the Reiner–Rivlin stress so that
he α-term in Eq. (18) will produce dynamic effects only in
hree-dimensional flows regardless of compressibility. Since
ncompressibility is imposed as part of the solution of the equi-
ibrium equation (4) the Reiner–Rivlin stress is formulated in
erms of A modified by any multiple of ∇ · V. In terms of

= A − (∇ · V)1 it is easily shown that the left hand side of
q. (21) becomes
2 + 1
2 [(tr B)2 − tr(B2)]1 − (2 − tr 1)(3 − tr 1)(tr B)21, (22)

here the last term obviously vanishes in two or in three dimen-
ions. By design, tr B is zero in plane flow, and since the whole

A
s
v
p
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xpression is also zero then B2 is isotropic in plane compressible
ows just as A2 is isotropic in plane incompressible flows. With

he pressure modified by 1/2[(tr B)2 − tr(B2)] the Reiner–Rivlin
tress (Eq. (1)) is written with A replaced by B, as

= −1p + ηB + αC, C = B2 + 1
2 [(tr B)2 − tr(B2)]1.

(23)

n principle, the solution of the dynamical equations rendered
nder an incompressibility constraint should yield essentially
he same numerical result for the stress systems of Eqs. (1)
r (23). Numerical experiments on the parallel slot geometry
ave demonstrated that formulation (23) results in greater accu-
acy and improved convergence with respect to the magnitude
f α.

In the numerical implementation described below C is calcu-
ated from known velocity fields from its Cartesian components
isplayed in Appendix A. After a Galerkin projection onto ele-
ent nodes these values are used to obtain ∇ · C and ∇ · (∇ · C)
hich appear in the momentum and pressure equations respec-

ively. Analytical expressions for the direct computation of these
uantities are derivable by use of the following identities for the
omponents of the strain rate A:

ij = vi,j + vj,i = εjikω
k + 2vj,i = εijkω

k + 2vi,j,

k = εkmnvn,m. (24)

ere εijk is the alternator and the ωk are the components of
he vorticity vector ω. When these identities are employed in
he definition of B, the components of C, constructed from Eq.
23), can be expressed in the form

k
i = −ωkωi + 2(vj

,iv
k
,j + v

,j
i v

,k
j − v

j
,ja

k
i )

− 2δk
i (vj

,kv
k
,j − v

j
,jv

k
,k), (25)

here δk
i is the Kronecker delta. Eq. (A.5) of Appendix A are

ecovered when the components (25) are written in Cartesian
oordinates. The vorticity product terms are easily identifiable,
nd it then follows that the remaining terms appear in Eq. (A.5)
s sums of 2 × 2 Jacobians. The divergence of C can be derived
rom Eq. (25) and expressed in condensed notation as

· C = −ω · ∇ω − 2∇ × (∇V · ω), (26)

hich is easily shown to vanish in any plane flow independent of
lthough Eq. (27) is derived from Eq. (26) by an additional
patial differentiation the highest order of differentiation of the
elocity field is the same in each, and again this result is inde-
endent of the magnitude of (∇ · V).
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. Numerical method

The momentum equation for the Reiner–Rivlin fluid with
onstant coefficients takes the dimensionless form

∂u
∂t

+ Re[u · ∇u] = −∇p + ∇2u + α′∇ · C + F, (28)

here F denotes the body force vector, u the velocity vector and
is defined by Eq. (23). The Reiner–Rivlin number

′ = αγ̇w

η
(29)

s a Deborah number which measures the strength of the non-
ewtonian stress contribution. The Reynolds number Re =

γ̇wbHρ)/4η measures the inertial disturbance due to the hole of
iameter b. In view of Theorem 1.1 the Reynolds number will be
et to zero in all the simulations presented below. The solution
s obtained by marching in time to the steady state from a known
nitial state, and hence the scale of the dimensionless time t is
etermined by the magnitude of the time step.

.1. Temporal discretization

For the temporal discretization of the Navier–Stokes equa-
ions we use a time-splitting stiffly-stable scheme, which
nhances stability through backwards differentiation. The
mplemented scheme has three steps and it is a small extension
f the high-order splitting scheme proposed in [11]:

. Nonlinear step:

û =
Ju−1∑
q=0

αqun−q + �t

Ju−1∑
q=0

βq

× [−Re(un−q · ∇)un−q + α′∇ · (C)n−q + Fn−q].

(30)

In the above notation Ju ∈ {1, 2, 3} is the extrapolation order
for the velocity field, n is the current time step, αq, βq are
coefficients associated with the stiffly-stable scheme [11] as
shown in Table 1.
. Pressure step:

∇2pn+1 = ∇ ·
(

û
�t

)
, (31)

able 1
oefficients αq, βq, γ0 associated with the stiffly-stable scheme

oefficient First order Second order Third order

0 1 3/2 11/6

0 1 2 3

1 0 −1/2 −3/2

2 0 0 1/3

0 1 2 3

1 0 −1 3

2 0 0 1

T
d
n

5

5

(
n
b
c
t
t
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with the momentum-conservation boundary condition

∂pn+1

∂n
= n ·

⎡
⎣û −

Jp−1∑
q=0

βq∇ × (∇ × un−q)

⎤
⎦ , (32)

except on parts of the boundary where p is specified.
. Viscous step:[

∇2 − γ0

�t

]
un+1 = − γ0

�t
û + γ0∇pn+1 (33)

In the above notation Jp ∈ {1, 2, 3} is the extrapolation order
for the pressure. Dictated by Ju, Jp, the overall temporal
accuracy of the scheme can reach third-order for the New-
tonian case [11]. The results presented in this work use
Ju = Jp = 2.

.2. Spatial discretization

For spatial discretization we have adopted the spectral/hp
lement method described in [12]. It employs standard unstruc-
ured and hybrid grids unlike previous approaches that require
pecial structured grids. This new version of spectral elements
ses Jacobi polynomials with mixed weights as its hierarchical
asis. It accommodates accurate numerical quadrature and flex-
bility in discretization by employing polymorphic subdomains.
he degenerate case corresponds to a linear finite element dis-
retization with the vertices corresponding to linear modes. Each
lement consists of N modes per direction but no gridding within
he element is required as all computations are done in modal
pace. Specifically, each element is separated into linear vertex
odes, edge modes, face modes and interior or bubble modes.
For a smooth solution, the error in a Galerkin projection of a

mooth function converges exponentially fast to zero by simply
ncreasing the number of modes per element/subdomain. This
llows for selective refinement and sharp a priori error estimates
n the numerical solution without the overhead cost associated
ith re-generation of a three-dimensional mesh. Another dis-

inction with other versions of the hp finite element method
hat employ monomials is that very high orders can be readily
mployed (e.g., N = 32), and that the multi-dimensional basis
s a tensorial product in the transformed domain, [12]. This, in
urn, leads to good efficiency in simulations with high-order N.
he new method has been implemented in the two- and three-
imensional serial and parallel versions of the computer code
amed NεκTαr [13].

. Convergence studies

.1. Nonlinear discontinuities at element boundaries

The nonlinear dependence of the Reiner–Rivlin stress, Eq.
23), on the velocity gradient introduces an additional disconti-
uity across elemental boundaries whose strength is determined

y the Deborah number α′. Here the loss of accuracy of the
omputed solution due to the extra discontinuous terms is inves-
igated by means of a simple, but non-trivial, exact solution of
he governing equations. An exact solution of the inertialess
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ig. 2. The 1-, 2- and 4-element meshes used for the convergence studies of the r
he solution in all three directions.

einer–Rivlin problem balanced by a body force is given by the
ne-component velocity field

(y, z) =

⎛
⎜⎝

(1 − z2) cos(πy)

0

0

⎞
⎟⎠ , P = 0, (34)

ogether with the three-component, sustaining body force

(y, z) =

⎛
⎜⎝

η cos(πy)(2 + π2 − π2z2)

−πα sin(2πy)(1 + z2)

−2π2αz(1 − z2)

⎞
⎟⎠ . (35)

rom Eq. (34) it is clear that the body force F(y, z) has but
ne component parallel to U(y, z) for the Newtonian case, and

hat the other two components which contain α are required to
alance the nonlinear terms. The computational problem whose
ontinuous solution is given by Eqs. (33) and (34) was set up for
he meshes displayed in Fig. 2. For all of the computed velocity

t
e
s

Fig. 3. L∞ error relative to Eq. (34) for velocity (upper) and pressure (lower) plo
id. Each hexahedral element has a 10th order Jacobi polynomial approximating

omponents and for the computed pressure Fig. 3 shows that
he L∞ error, relative to Eq. (33), has a clear monotonic depen-
ence on α′. Furthermore, the effect of element boundaries has
secondary effect on the accuracy of the computed solution

rovided it converges. This is the main conclusion to be drawn
rom this test. For this problem convergence for multi-element
eshes was limited to α′ < 0.6 whereas for the single element

ase convergence was attained at higher values. Convergence
or this simple test flow is not an indicator of the level to be
xpected for the complex meshes described below. The pressure
rror, O(10−3) at α′ ≈ 0.8, is 2 orders higher than the velocity
rror for this and all the examined values of α′.

.2. Polynomial over-integration
Nonlinearities in the Reiner–Rivlin equation (23) contribute
o the time-splitting scheme through the ∇ · C term in Eq. (29) at
very spatial integration point. In spectral/hp methods when the
ame integration rule is employed for both linear and nonlinear

tted against the Deborah number as α′/2 for 1-, 2- and 4-element meshes.
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erms errors may occur for the latter from an insufficient number
f quadrature points. A polynomial u(ξ) of degree N is integrated
xactly with (N + 3)/2 Gauss–Lobatto–Legendre quadrature
oints. The representation u(ξ) = ∑N

i=0ûφi(ξ) in terms of basis
unctions φi(ξ) gives rise to inner products 〈φi(ξ)φj(ξ)〉 in the
valuation of quadratic nonlinearities. Let M = N + 1 be the
umber of modal coefficients for the polynomial expansion of
(ξ), quadratic nonlinearities involve the computation of poly-
omials of degree 3N for which the minimum sufficient number
f quadrature points is

3N = 3N + 3

2
= 3(M − 1) + 3

2
= 3M

2
. (36)

tudies of over-integration have been presented in [14] for
he viscous Burger’s equation; in this work over-integration is
xtended to the Reiner–Rivlin fluid. Fig. 4 shows the effect of
he over-integration order (defined as the multiplicative factor
f M in the right-hand side of (36)) on the velocity and pres-
ure L∞ error relative to the analytical solution for the meshes
f Fig. 2. Integration accuracy of the quadratic nonlinearity of
he Reiner–Rivlin terms is substantially improved with the three-
alves rule; it increased by one order of magnitude in the velocity
nd pressure for the meshes of Fig. 2. The saturation of the error
n the plot suggests that there is no numerical advantage in using

ore points; curiously, the accuracy in the pressure relative to
hat of the velocity component remains 2 orders of magnitude
orse. However, this is also true for Stokes flow which suggests

hat the cause is not the non-Newtonian term.

. Benchmark problem: parallel slot
For the rectilinear shear flow of a Newtonian fluid driven
y a constant pressure gradient {Px, 0, 0} with components
u(y, z), 0, 0}, Kearsley [9] showed that the same velocity field

o
b
t
q

ig. 4. L∞ error relative to Eq. (34) for velocity (upper) and pressure (lower), at α′ =
ian Fluid Mech. 145 (2007) 57–68 63

lso satisfies the equilibrium problem for the Reiner–Rivlin
tress with constant coefficients provided the pressure is defined
y

(x, y, z) = xPx + α

(
uΔ2u − ω2

2

)
, ω = {0, uz, uy},

(37)

here the subscripts stand for the respective spatial derivatives,
x is the constant driving pressure gradient, and Δ2 is the
aplacian operator in the {y, z} plane. In Poiseuille flow the

erm in α is constant, but in the general rectilinear flow this
erm gives rise to a pressure distribution within the {y, z} plane.
or the cross-section of Fig. 5 most of the pressure variation is
onfined to the junction of the channel with the slot.

From its definition, Eq. (10), the normalized hole pressure is
btained from Eq. (37) as

PH

(αγ̇2
w)

= 1

2
− u2

z

8
. (38)

ere the derivative uz is taken at the midpoint of the slot’s bot-
om. About one or two slot widths h from the bottom of a deep
lot (Fig. 5) Poiseuille flow is obtained with maximum velocity
h/H)2 times the corresponding value in the main channel. The
ole pressure calculated relative to that point changes the last
erm in Eq. (38) to −(h/H)4/2, which demonstrates that in this
enchmark problem with h/H = 1/10 deviations from Kears-
ey’s value of 1/2 for the normalized hole pressure are too small
o be considered. Although Kearsley’s problem is solvable in
he y, z-plane it is converted here into a three-dimensional prob-
em in a channel of finite length for the purpose of validation

f the numerical code. The finite element mesh was constructed
y replicating a constant T-shaped cross-section, Fig. 5, along
he entire x-axis. As seen in the figure, the junction is a smooth
uarter circle instead of a sharp edge. In order to simulate a

0.6, plotted against the over-integration order for 1-, 2- and 4-element meshes.
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nomial orders N = 2 and 4 per direction, and no substantial
differences were observed in the calculated fields.

The results for three-dimensional holes are presented in terms
of the disturbance pressure field which is the extra pressure due
Fig. 5. Mesh used for Kearsley’s parallel slot

hannel of infinite length, the following boundary conditions
ere applied: at the far edges of the main channel, z = ±3.5,
Dirichlet parabolic profile (1 − y2, 0, 0) was imposed for the
elocity, while on the entry and exit planes a Neumann bound-
ry condition ∂u/∂n = 0 was imposed. However, on the small
art of the entry and exit planes close to the z-edges on either
ide, the combined condition ∂u/∂n = 0, P = 0 ensured that
he pressure at the channel edges would serve as a reference
alue. Moreover, a Dirichlet parabolic profile (0.01 − z2, 0, 0)
as imposed for the velocity at the deep end of the slot. The flow
as driven by a constant body force equivalent to the imposed
riving pressure gradient Px.

Meshes with rounded corners and sharp corners at the slot
unction were tried. The rounded corners, combined with over-
ntegration, gave r-values in closest agreement with Kearsley’s
9] analytical value for deep, narrow holes. The calculated pres-
ures along the centerline of the cross-section are displayed in
ig. 6 for several polynomial orders N. The approach to Kears-

ey’s limit of 1/2 with increasing N was achieved only with
ver-integration using the three-halves rule, demonstrated above
n Section 5.2. The inversion of the curves for N = 3 and 4 in
ig. 6 shows that the limit is not approached uniformly.

. Numerical results for three-dimensional holes
With the walls of the plane channel of Fig. 1 at y = ±1,
he fully three-dimensional hole problem is addressed with a
rescribed Poiseuille velocity u(y) = 1 − y2, v = w = 0 at the
hannel entrance, while the outflow channel boundary is pre-

F
s
l
t

detail of the rounded T-shaped cross-section.

cribed with the Neumann boundary condition ∂u/∂n = 0, P =
. The boundaries for the cross-flow z-direction are assumed to
e periodic, and zero velocities are prescribed on the remain-
ng solid surfaces. A typical simulation for such a geometry has

million degrees of freedom. Results were obtained for poly-
ig. 6. Reiner–Rivlin disturbance pressures along the centerline of the cross-
ection for increasing polynomial order N, showing the approach to Kearsley’s
imit of 1/2 for α′ = 0.1. The lower wall of the main channel is at y = −1. Note
hat αγ̇2

w = α′τw.
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flow is governed by the Stokes equation. However, it is clear
from Figs. 7 and 9 that, except for very small values of b/H ,
the flow near the wall opposite the hole is not undisturbed
ig. 7. Streamwise disturbance-pressure profiles along the centerline of the top
all, b/H = 1. The pressure constant is chosen so that the Reiner–Rivlin hole
ressure can be read off from the negative of the intercept for each value of α′
indicated as r-r in the legend).

o the disturbance created by the hole. Initially let the hole be
overed by a membrane so that Poiseuille flow is obtained in
he channel and within the hole the fluid is at rest. The initial
ressure field is then a linear function of x in the channel and a
onstant in the hole. After the membrane is removed a new steady
tate is established. The difference between the final and initial
ressure fields is the disturbance pressure. For the remainder
f this section the disturbance pressure, scaled with τw, will be
alled simply the pressure, unless otherwise noted.

Fig. 7 shows the centerline pressure on the top wall of the
hannel for b/H = 1 for several values of α′ (r-r). The pressure
onstant is chosen so that the pressure is zero at (0, −d, 0), the
enter of the bottom plate of the hole at depth d. By definition
10) the far upstream (x = −7) value of the pressure is the nega-
ive of the hole pressure as indicated in Fig. 7, and the difference
etween the far downstream (x = 10) and far upstream values
s the pressure recoveryPD due to reduced dissipation relative
o the no-hole geometry. If PH is added to each curve then the
ressure will be zero far upstream, PH at the bottom of the hole,
nd PD far downstream. The advantage of setting the pressure
o zero at the hole bottom is that PH and PD can be conveniently
isplayed on one plot. The plane (0, y, z) is one of fore-aft sym-
etry since at each end of the channel the flow is asymptotic

o Poiseuille flow. In Stokes flow the streamlines and the pres-
ure field must then have fore-aft symmetry and anti-symmetry
espectively as is evident in Fig. 7 and in Fig. 11 below and,
urthermore, PD must be equal to −2PH. These properties of
tokes flow provide useful checks on the numerical solutions.

The Reiner–Rivlin hole pressures for three hole sizes are
lotted in Fig. 8 according to Eq. (19), and rendered dimen-
ionless with the Poiseuille wall shear stress, τw = ηγ̇w. The
inearity of the plots suggests that for Reiner–Rivlin numbers

ess than about 0.4 the solutions obtained here fall within the
omain of first order perturbations of Stokes flow. In both
heoretical and experimental work it has been assumed [7,8]
hat the hole pressure in Stokes flow is negligible compared to

F
P

0

ig. 8. Reiner–Rivlin hole pressure as a function of the Reiner–Rivlin number,
′.

on-Newtonian effects. For large holes the experimental data
f Tong [15] for b/H = 1 show PHS to be measurable. Over
he range of numerical values in Fig. 8. PHS scales roughly as

(b/H)3 while r scales as ∼ (b/H)−1/2. The latter is unlikely
o hold for very small b/H , and the r values given here may
e approaching the Higashitani–Pritchard [10] value of 1/6 as
/H → 0; indeed a calculation for b/H = 1/10 on a coarse
esh gave r = 0.17. Kearsley’s value of 1/2 for the parallel slot
ay well be an upper bound for r.
When the pressure curves in Fig. 7 are shifted by PRR − PHS

he result is essentially a single curve as shown in Fig. 9 for
/H = 1/2; similar results were obtained for all values of
/H . This plot shows that away from the aperture the pressure
istribution for α′ > 0 differs from the corresponding Stokes
eld by a constant. This implies that far from the aperture the
ig. 9. Centerline disturbance pressure profiles of Fig 7 shifted upwards by

RR − PHS for b/H = 1/2 onto a single curve for α′ (r-r in the legend) up to
.4.
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ig. 10. Disturbance-pressure contours on the top plane, b/H = 1, α′ = 0.4
howing that the disturbance extends across the entire channel width; positive
ontours lie to the right of x = 0.

oiseuille flow as assumed in the Higashitani–Pritchard [10]
heory. While the shifted pressure profiles differ slightly near
heir maximum/minimum values, they coincide very closely as
hey level off downstream. This means that PD remains at the
tokes value even though PH does not.

Fig. 10 displays pressure field contours for α′ = 0.4 on the
op wall (x, H/2, z) for b/H = 1. The contour pattern shows the
nexpected result that the hole disturbance of O(PH) extends
ll the way across the channel. Since PHS scales as (b/H)3

t suggests that in experimental designs featuring large holes,
uch as the Lodge and Vargas [7] stressmeter, the placement
f transducers to measure the gradient of the total pressure
ill be subject to systematic error in the arrangement shown in
ig. 1. Furthermore, a lateral off-set of the transducer T1 does
ot resolve the problem; clearly, it should be placed upstream
n the undisturbed region.

The hole-pressure is an example of how the asymmetry of an

pparently small geometric disturbance of a viscometric domain
an give rise to a significant effect due mostly to the normal
tresses. For the values of α′ of this work the velocity fields dif-
er only slightly from their Newtonian counterparts. In Fig. 11

a
i
t
r

Fig. 12. Velocity components across the aperture for α′ =
ig. 11. Three-dimensional pathlines at a small distance above the wall for
′ = 0.

treamlines originating upstream at a distance 0.025H from the
ower wall are seen to form a bowl as they pass over the aper-
ure with α′ = 0. This picture changes very slightly when α′ is
ncreased to 0.4, and examination of the velocity field through

ost of the domain yields a similar conclusion. This is consis-
ent with Fig. 9 which shows the pressure field on the top wall to
e Stokesian, but it does not account for the extra hole pressure
hich shifts the pressure curves onto a single one. The plane of

he aperture is the one location where the Reiner–Rivlin velocity
elds are distinctly different from their Newtonian counterparts.
n Fig. 12 the velocity components are plotted in the plane
f the aperture along (0, −H/2, z), for b/H = 1 and α′ = 0.4.
he Newtonian v, w-components, by symmetry, are zero while

heir Reiner–Rivlin counterparts are small but distinct from the
umerical errors. When the u-components are magnified they
xhibit differences of the same magnitude as the Reiner–Rivlin
, w-components. Thus even in the limit of small shear rates
he three-dimensional hole-pressure flow in the region of the

perture is considerably more complicated than the correspond-
ng two-dimensional problem. The Higashitani–Pritchard [10]
heory is built conceptually on the assumption that the aperture
egion has streamlines in the pattern of Fig. 11.

0.4, showing that v, w are 2 orders smaller than u.
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. Conclusion

The low shear-rate hole pressure for a non-Newtonian fluid
as been shown to be determined by the augmented second
rder fluid, Eq. (9), derived from the materially constant stress,
q. (3), in which the Reiner–Rivlin stress has constant coeffi-
ients η, and α. In that equation the definition of the isotropic
tress allows the equilibrium equation to be satisfied by the
olution of the Reiner–Rivlin problem, Eq. (4), by means of
heorem 1.1 proved by Caswell [1]. This reduction in the order
f spatial derivatives is numerically advantageous, and natu-
ally breaks the problem into two steps. In the first, the hole
ressure relative to the Reiner–Rivlin value is determined ana-
ytically to be independent of hole size and to be the same
s the Tanner and Pipkin [8] result for two-dimensional slots.
n step two the Reiner–Rivlin value is determined by solu-
ion of Eq. (4). Since the term in α in Eq. (1) plays no
ole in plane flow, the Reiner–Rivlin stress has been put into

form, Eq. (23), that is unaffected by the small discrepan-
ies in the dilatation rate ∇ · V from zero which occur in
umerical simulation. This avoids the creation of artificial three-
imensional forces in regions of plane flow embedded in a
hree-dimensional domain. Our modified NεκTαr code was
hecked in two benchmark problems with known analytical
olutions. In particular, for Kearsley’s [9] parallel slot the r coef-
cient in Eq. (19) is calculated to within less than 1% of the
nalytical value of 1/2. For the slot, over-integration was found
o be essential to obtain convergence with respect to the spectral
rder N.

The numerical values of the Reiner–Rivlin hole pressure have
een shown to follow Eq. (19), and its constants PHS, and r
ave been tabulated for b/H = 1/4, 1/2, 1. The Stokes hole
ressure, PHS, has been shown to scale roughly as (b/H)3,
nd from the experimental data of Tong [15] its magnitude
t b/H = 1 was found to be in the measurable range. The
oefficient r of the Reiner–Rivlin number which determines
ole size dependence of the total hole pressure PH in Eq.
20) is smaller than the Higashitani–Pritchard [10] value of
/6, which may be the limit for very small holes. Of value to
xperimental design is the observation that the pressure on the
hannel wall opposite the aperture is significantly disturbed.
n important assumption of the Higashitani–Pritchard theory

s that this disturbance is negligible, which is true only for
ery small holes. This assumption has been influential in the
esign of the Lodge stressmeter where the hole pressure was
easured with pressure transducers located opposite the aper-

ure and at the bottom of the hole. This transducer together
ith one located upstream, as in Fig. 1, was also used to mea-

ure the pressure gradient of the undisturbed channel flow. This
pparent hole pressure will be exactly zero in Stokes flow due
o its symmetry properties, but, once nonlinear effects such
s non-Newtonian stresses or inertia are significant, the mea-
urement cannot be accurately interpreted. Furthermore, the

easured pressure gradient will not be the undisturbed value.
s might be expected, large holes are intrusive, and their dis-

urbance, as shown in Fig. 10, can reach all the way across the
hannel.
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ppendix A

In Cartesian coordinates {x, y, z} the velocity field has com-
onents {u, v, w}, and with subscripts to denote the spatial
erivatives the components of B can be arrayed as,

=

⎛
⎜⎝

ux − vy − wz uy + vx uz + wx

∗ vy − ux − wz vz + wy

∗ ∗ wz − ux − vy

⎞
⎟⎠ (A.1)

he components of B2 are then

B2
〈xx〉 = (ux − vy − wz)2 + (uy + vx)2 + (uz + wx)2,

B2
〈xy〉 = (uz + wx)(vz + wy) − 2wz(uy + vx),

B2
〈xz〉 = (uy + vx)(vz + wy) − 2vy(uz + wx),

B2
〈yy〉 = (uy + vx)2 + (vy − ux − wz)2 + (vz + wy)2,

B2
〈yz〉 = (uy + vx)(uz + wx) − 2ux(vz + wy),

B2
〈zz〉 = (uz + wx)2 + (vz + wy)2 + (wz − ux − vy)2.

(A.2)

t can be shown that

1

2
[tr B2 − (tr B)2]

= (∇ · V)2 + ω2 − 4

[
∂(u, w)

∂(x, z)
+ ∂(u, v)

∂(x, y)
+ ∂(v, w)

∂(y, z)

]
,

(A.3)

here ω is the magnitude of the vorticity vector

= {ω〈x〉, ω〈y〉, ω〈z〉} = {wy − vz, uz − wx, vx − uy}. (A.4)

rom Eq. (23) the components of C can now be written as

〈xx〉 = −ω2
〈x〉 + 4

∂(v, w)

∂(y, z)
,

〈xy〉 = −ω〈x〉ω〈y〉 + 2
∂(w, v)

∂(x, z)
+ 2

∂(w, u)

∂(y, z)
,

〈xz〉 = −ω〈x〉ω〈z〉 + 2
∂(v, w)

∂(x, y)
+ 2

∂(u, v)

∂(y, z)
,

〈yy〉 = −ω2
〈y〉 + 4

∂(u, w)

∂(x, z)
,

〈yz〉 = −ω〈y〉ω〈z〉 + 2
∂(v, u)

∂(x, z)
+ 2

∂(w, u)

∂(x, y)
,

〈zz〉 = −ω2
〈z〉 + 4

∂(u, v)

∂(x, y)
. (A.5)
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cations to flow-structure interactions. Ph.D. Thesis, Brown University,
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f the three-dimensional field contains embedded, two-
imensional regions such as a plane of symmetry, where w = 0,
nd all derivatives ∂(∗)/∂z = 0, then inspection of Eq. (A.5)
onfirms that all components of C are identically zero, except

〈zz〉 = −ω2
〈z〉 + 4

∂(u, v)

∂(x, y)
. (A.6)

ith the cross-plane gradient ∂(C〈zz〉)/∂z being zero, C〈zz〉 has
o dynamic effect. This result is independent of the magnitude
f (∇ · V). Eq. (A.5) are the same as they would be in the A-
ormulation with exact incompressibility.
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